Local projections for high-dimensional outlier detection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier detection for high dimensional data pdf

Is particularly useful for high dimensional data where outliers cannot be found.High dimensional data in Euclidean space pose special challenges to data. In about just the last few years, the task of unsupervised outlier detection has found.Outlier detection is an outstanding data mining task referred to open pdf with mac word class="text" href="https://tokiqivy.files.wordpress.com/2015/06/opel...

متن کامل

Outlier detection for high-dimensional data

Outlier detection is an integral component of statistical modelling and estimation. For highdimensional data, classical methods based on the Mahalanobis distance are usually not applicable. We propose an outlier detection procedure that replaces the classical minimum covariance determinant estimator with a high-breakdown minimum diagonal product estimator. The cut-off value is obtained from the...

متن کامل

High-dimensional Outlier Detection: the Subspace Method

" In view of all that we have said in the foregoing sections, the many obstacles we appear to have surmounted, what casts the pall over our victory celebration? It is the curse of dimensionality, a malediction that has plagued the scientist from the earliest days. " – Richard Bellman 1. Introduction Many real data sets are very high dimensional. In some scenarios, real data sets may contain hun...

متن کامل

A Fast Randomized Method for Local Density-Based Outlier Detection in High Dimensional Data

Local density-based outlier (LOF) is a useful method to detect outliers because of its model free and locally based property. However, the method is very slow for high dimensional datasets. In this paper, we introduce a randomization method that can computer LOF very efficiently for high dimensional datasets. Based on a consistency property of outliers, random points are selected to partition a...

متن کامل

Hybrid Approach for Outlier Detection in High Dimensional Data

It has been observed recently that the prominence of multidimensional data is increasing. Existing outlier detection techniques generally fail to work on multi-dimensional data. The need for analyzing high dimensional data has thus increased in today’s data trends. It has enormous application in medical domain, network intrusion and satellite imagery. Even though there are existing methodologie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: METRON

سال: 2020

ISSN: 0026-1424,2281-695X

DOI: 10.1007/s40300-020-00183-5